
Workflow Guide : Leveraging the
power of YOCTO

Linux OS Porting for Embedded Applications

Workflow Guide : Leveraging the power of YOCTO

This document is created for the community of developers working
on embedded Linux applications. The purpose of the document is to
guide you through the steps of building an image for Linux
distribution, using the Yocto Framework.

P.S – In order to best utilize the information in this document, the
following know-how is a must:

• Familiarity with basic Linux utilities and text editors
• Experience with Python is helpful, but not a necessity.
• Understanding of the Yocto Project and Open Embedded

Project.
• Basic understanding of the build systems

Understanding System Requirements and the OpenEmbedded (OE)
Build System:

Before we discuss about the workflow, it is imperative to develop a
basic understanding regarding the system requirements and OE Build
System. Here are the necessary details.

a. System Requirements:

1. A Host System: Ideally a system with a minimum free disk space
of 50 Gbytes and that runs on any Linux distribution (i.e. Ubuntu,
Fedora, CentOS, openSUSE, or Debian,). Most often a native Linux
machine function is used as the development host.

2. Packages for Builds: Do ensure that your host development
system has the following packages (with respect to Linux
Distribution – Ubuntu, Fedora, CentOS & more)

• Essentials- like gawk, wget, git-core, diffstat, unzip,
texinfo, build-essential, socat, cpio, python, xz-utils etc

• Graphical and Eclipse Plug-In Extras–like libsdl1.2-
dev,xterm etc

• Documentation –like docbook-utils ,fop ,dblatex ,xmlto

3. Any release of the Yocto Project

b. OpenEmbedded Build System and BitBake Tool

OpenEmbedded (OE) is the build system for the Yocto Project. The
central component of this build system is BitBake.

BitBake performs tasks like parsing the Metadata, Creating task
lists from the Metadata and more.

Figure 1: YoctoIDE

Workflow Guide : Leveraging the power of YOCTO

The BitBake tool consists of the following functional blocks:

a) User Configuration: This includes the metadata for managing
the YOCTO build process. As a developer, you can define the
build environment by specifying target architecture, location to
store the downloaded source, and other build properties using
User Configuration file.

b) Metadata, Machine & Policy Configuration Layers: These
layers consist of data critical for the management of the build
process.

• Metadata: This layer consists of user-supplied recipe
files, patches, and append files.

• Machine Configuration (BSP): This layer consists of
information specific to your target architecture for which
the image is being built. The information specific to the
machine configuration is provided by the BSP layer of the
Yocto layered architecture model.

• Distro Layer/Policy Configuration: This layer consists of
data that specifies the policy configurations for the
specific distribution. This layer includes class files,
configuration files and recipes. These recipes would
include custom image recipes, distribution-specific
configuration, initialization scripts.

Workflow Guide : Leveraging the power of YOCTO

c) Source Files: These include sources such as Upstream releases,
local projects, and Source Control Manager (SCMs), from where
the build system downloads source files to build an image.

d) Build System: This block specifies the processes during which
the BitBake fetches source, applies patches, executes
compilation, analyzes output for package generation, generates
and tests these packages, generates images and cross-
development tools.

e) Package Feeds: This module consists of directories with
various types of output packages in RPM, DEB or IPK format.
Package feeds are used while building an image or SDK,
produced by the build system. They are also used for extending
or updating existing images on devices at runtime by copying
and sharing them on web server.

f) Images: This is an output module that manages the Linux
Images created by the Build System.

g) Application Development SDK: The module consists of
various cross-development tools, which are built either along
with the image or separately with BitBake.

Workflow Guide : Leveraging the power of YOCTO

Workflow for using Yocto project as a build system for Embedded
Linux:

Figure 2: Workflow: Building Linux Image using Yocto

Workflow Guide : Leveraging the power of YOCTO

1. Setup the Host System for YOCTO Build System: The host
system should comply with the minimum system requirements,
as mentioned before.
Additionally, you should test your host build system for the
following:

a. Required Packages
b. Build system is meeting the Minimal Version Requirements of

Git, tar, and Python

2. Download the required version of the YOCTO release: Set up
the latest Yocto Project files on your host development system by
cloning a local copy of the Poky Git repository.

$ git clone http://git.yoctoproject.org/git/poky

$ cd poky

$ git checkout -b fido origin/fido (Any poky release branch
may be checked out like Jethro,Dizzy,Daisy,Dora)

3. Download the vendor provided meta for the BSP: Depending
on the processor platform (ARM, MIPS, PowerPC, and x86), you
can download the meta data for BSP provided by the specific
vendor.

$ git clone git://git.yoctoproject.org/meta-ti meta-ti

$ cd meta-ti

$ git checkout -b fido origin/fido

Workflow Guide : Leveraging the power of YOCTO

4. Add the Vendor meta to the Yocto build system: Add the Vendor
meta to your build host environment. For example, meta-ti is the
metadata for the ti specific target boards .

BBLAYERS ?= " \

##OEROOT##/meta \

##OEROOT##/meta-yocto \

##OEROOT##/meta-ti \ // ti layer added

"

5. Make the Build configuration changes: Check the local
configuration file and make the build configuration changes by
editing the local.conf files. This should be done before calling the
BitBake command to initialize the build.
$ vim conf/local.conf

MACHINE ?= "beaglebone" // if building for beagle bone

6. Initialize the Build Environment: To define the Open Embedded
build environment, the specific setup script on the build host is
executed.
$ source oe-init-build-env

The script creates a Build Directory, which is located in the Source
Directory. After that the current working directory is set to the
Build Directory. Once the build is completed, the Build Directory
will have all the files created during the build.

Workflow Guide : Leveraging the power of YOCTO

Vim conf/bblayers.conf

7. Start Building the image: Now the YOCTO IDE/ framework has
received all the commands necessary for it to build the Linux
image. Next through a series of actions Yocto (IDE)will build the
image as per the information/ specifications in the metadata.

$bitbake -k core-image-minimal

8. Writing the Linux image: Depending on the information
provided in the TARGET_DEVICE command, you can write the Linux
image on any of the target device like SATA drive, SD card or even
USB key with the help of mkefidisk.sh script included in the poky
repository.

Why Use Yocto framework for Linux projects?

1. Easy customization: Yocto has a very robust and powerful
customization architecture which offers numerous
customization options such as footprint sizes, enabling/
disabling of components like graphics subsystems, visualization
middleware, and services.

2. Vendor Support: Yocto Project enjoys the support of most of
the semiconductor and OS vendors and major electronic
manufacturing firms. Thus with Yocto, you can leverage a solid
support ecosystem and achieve your project goals.

3. Reusability: The application developed using Yocto can be
reused and build for different boards by changing the vendor
meta. This allows for reuse of code and resources across
similar product lines.

Workflow Guide : Leveraging the power of YOCTO

4. Simplified Build operations for Embedded Linux applications:
Single common framework of Yocto has helped get rid of the
dependencies on discrete build systems wherein each of the SoC
vendors created their own build framework compatible only with
their microprocessor platforms.

5. Seamless addition of UI components: Support for enhancing
user experience for devices with display. This is facilitated by
system components like Qt, Clutter, such as X11, GTK+, and SDL .

6. Emulator support: It supports hardware and device emulation
with the QEMU Emulator. Thus, an image built through Yocto
Project can boot inside a QEMU emulator, with the development
environment acting as a test platform for embedded software.

7. Added Convenience: With its customizable recipes, tools and
templates for building systems and porting OS, Yocto enables the
developers to focus on other core development tasks.

8. Systematically Managed & Updated: Every 6 months, a new
release of Yocto including kernel (LTSI), toolchain, and package
versions is released.

Workflow Guide : Leveraging the power of YOCTO

9. Reduced Time To Market for Crucial Embedded Linux
applications: With Yocto, a developer can build the entire Linux
system from scratch in few hours, depending on the project
components.

10. Readily Available Development Tools: As a Yocto user, you get
access to a wide array of development tools like Application
development Toolkit (ADT), ECLIPSE IDE Plug-in, Graphical UI for
Embedded devices (Matchbox), tools for QA – among others.

If you wish to know more about how you can use the YOCTO
Project for creating Linux distributions for your embedded
application development projects, please get in touch with our
Product Engineering Team

Workflow Guide : Leveraging the power of YOCTO

mailto:sales@embitel.com

FAQs | IoT solutions for Predictive Maintenance

