Close this search box.

[Vlog] Demo of Our Motor Control System for BLDC/PMSM Motors in Electric Two-Wheelers, E-Autos or Electric Cars

The success of your Electric Vehicle Project depends on how efficiently the integrated control systems are able to operate various Electric Motors. Hence, investing in or developing a robust Motor Control System (for BLDC Motors/PMSMs) is akin to ‘half the battle won’, in the universe of Electric Vehicle (EV) production programs.

As an Automotive OEM/Supplier, you must have been confronted with issues related to Electric Motor operations while working with different segments of EVs such as Electric Cars, Electric Two-Wheelers, E-Rickshaws/E-Autos, etc. Each segment of EV requires motors with different power ratings.

This issue can be overcome with the help of the Motor Control Solutions designed by the Electric Vehicle Consultants at Embitel Technologies.

Our solution is a motor control system that can drive Permanent Magnet Synchronous Motors (PMSMs) and Brushless DC (BLDC) Motors of power ratings ranging from 1kW to 5kW.

It is integrated with the Field-Oriented Control (FOC) Algorithm that ensures accurate and precise operations (by overcoming the speed error).

Check out this Motor Controller Demo, to watch the FOC Algorithm in action.

Summary of Learnings from this Demo Video of Our Motor Control System for BLDC Motors and PMSMs

Our consultants explain the hardware & software components and the system I/O.

The following are the main components of this motor controller solution for EVs:

  • The ECU/Master Controller integrated with the FOC Algorithm
  • A power stage (essentially a DC to AC converter)
  • A control panel for Motor On/Off, Forward/Reverse & Throttle Control
  • BLDC motor/PMSM

Input is received from the control panel. These signals (i.e., motor switch ON/OFF, motor forward/reverse, motor throttle, etc.) are given to the microcontroller.

The output from the microcontroller is fed directly to the power stage. The output of the power stage is three-phase voltage and it is given to the motor. This setup can work as a Brushless DC motor controller or a PMSM motor controller.

The video provides a demo of how FOC can help to overcome the error between input and actual RPM of the motor. This has been demonstrated with the help of a MATLAB Simulation.

We have designed an FOC Controller Model and a Plant Model. Join us to watch how FOC delivers the required results!

If you liked our video, please share it within your circle, as this will encourage us to create more such videos for you.

We also have a YouTube channel with a collection of videos that may be of interest to you. Don’t forget to subscribe to our channel so that you get notified of our new videos.


About the Author

Vaibhav is a digital-marketing professional with a deep-rooted interest in everything automotive. Regular collaborations with automotive tech guys keep him apprised of all new trends in the automotive industry. Besides digital marketing, Vaibhav is fond of writing and music.

Scroll to Top